Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2017

Simulated prompt acceleration of multi-MeV electrons by the 17 March 2015 interplanetary shock

Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by \~ 1 MeV is inferred on less than a drift time scale as seen in prior shock compression events, which launch a magetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD-test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short-lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.

Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiaochen; Thaller, Scott; Wiltberger, Michael; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024445

17 March 2015; MeV electron acceleration; Radiation belt; test-particle simulation; Van Allen Probes

2015

3D test-particle simulation of the 17-18 March, 2013 CME-shock driven storm

D test-particle simulation of energetic electrons (hundreds of keV to MeV), including both an initially trapped population and continuously injected population, driven by the Lyon-Fedder-Mobarry (LFM) global MHD model coupled with Magnetosphere-Ionosphere Coupler/Solver (MIX) boundary conditions, is performed for the March 17, 2013 storm. The electron trajectories are calculated and weighted using the ESA model for electron flux vs. energy and L. The simulation captures the flux dropout at both GOES-13 and GOES-15 locations after a strong CME-shock arrival which produced a Dst=-132 nT storm, and recovery to the pre-storm value later, consistent with GOES satellite measurements. This study provides the first 3D test-particle simulation combining the trapped and injected populations. The result demonstrates that including both populations in the simulation is essential to study the dynamics of the outer radiation belt over the typical day-long timescale of ring current development, main phase and early recovery phase.

Li, Zhao; Hudson, Mary; Kress, Brian; Paral, Jan;

Published by: Geophysical Research Letters      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015GL064627

17 March; 2013; CME-shock driven storm; Radiation belt; test-particle simulation



  1